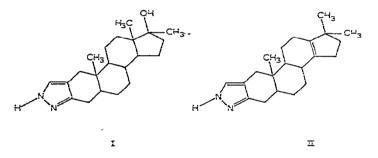
Journal of Chromatography, 115 (1975) 687-689

© Elsevier Scientific Publishing Company, Amsterdam - Printed in The Netherlands

CHROM. 8642


Note

Gas chromatographic determination of Stanozolol in veterinary suspensions

DONALD F. MAGIN

Winthrop Laboratories, Div. Sterling Drug, Inc., 33 Riverside Avenue, Rensselaer, N.Y. 12144 (U.S.A.) (Received July 17th, 1975)

The need for a stability-indicating assay procedure for Stanozolol in veterinary suspensions led to the development of a gas chromatographic procedure for not only the intact drug (17α -methyl- 17β -hydroxy- 5α -androstane-3,2c-pyrazole; I) but also its major degradation product, the 17-dehydro analog (18-nor-17,17-dimethylandrost-13-eno-3,2c-pyrazole; II).

The preparation of interest was Winstrol-V Suspension (Winthrop Laboratories, Div. Sterling Drug, Inc.), of the following composition:

	mg/ml
Stanozolol N.F. ¹	50.00
Thimerosol N.F.	0.50
Polysorbate 80 U.S.P. ^z	1.00
Sodium chloride U.S.P.	9.00

The method presented works very well for a quality control procedure, since it is rapid, precise, and requires no prior separation of the drug from the other constituents of the suspension. It also shows promise as a stability-indicating method as indicated by the excellent separation of the intact drug from its 17-dehydro analog.

EXPERIMENTAL AND RESULTS

24

Suspensions taken for analysis were prepared according to the commercial formulation by Winthrop Laboratories, Div. Sterling Drug. The suspension was

shaken on a mechanical shaker for 10-15 min, and a portion equivalent to about 50 mg (1 ml) was quickly and completely transferred to a 10-ml volumetric flask. To this was added 1.0 ml of a 50 mg/ml methyl androstanalone internal standard solution in dimethylformamide (DMF) (analytical-reagent grade, Mallinckrodt, St. Louis, Mo., U.S.A.) and then diluted to volume with DMF. This resulted in a clear solution. A reference standard was similarly prepared, using 50.0 mg of Stanozolol N.F. Reference Standard in place of the 1.0 ml of suspension, and adding 1 mg of the 17-dehydro compound. 2-ul portions were injected into a Perkin-Elmer Model 900 gas chromatograph containing a glass column 6 ft. \times 4 mm I.D. packed with 80– 109 mesh Chromosorb W AW DMCS coated with 10% SE-30. The oven temperature was set at 360° and the injection port temperature at 350°. A flame ionization detector was used, with the manifold at 350°. Helium was used as the carrier gas, at a flow-rate of 60 ml/min. The hydrogen and air flow-rates were approximately 30 and 300 ml/min. set to maximize detector response. Under these conditions, the retention times were 1.52 min for methyl androstanalone, 2.17 min for the 17-dehydro compound and 3.42 min for Stanozoloi (Fig. 1).

Triplicate determinations were made, yielding an average assay value for Sta-

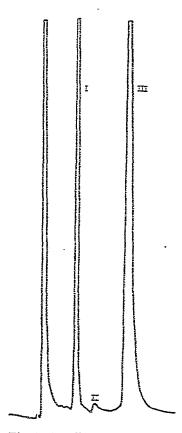


Fig. 1. Gas-liquid chromatogram of Stanozolol. I = Methyl androstanalone; II = 17-dehydro compound; III = Stanozolol.

NOTES

nozolol of 49.51 mg/ml (range 49.04–49.76 mg/ml), with a relative standard deviation of 0.33%. Calculations were handled by a Perkin-Elmer PEP-1 processor, in the internal standard mode.

ACKNOWLEDGEMENT

This work was done at Winthrop Laboratories, Rensselaer, N.Y., in the Quality Control Department.

REFERENCES

- 1 National Formulary, American Pharmaceutical Association, Washington, D.C., 14th ed., 1975.
- 2 The United States Pharmacopeia, United States Pharmacopeial Convention, Rockville, Md., 19th ed., 1975.